Q39

No IR4, os vetores x e y são determinados pelo sistema

Sabendo que u = (−1,0,2,3) e v = (2,1,0,5), o produto interno de x e y é

(A) −27,5
(B) −26,1
(C) −24,5
(D) −23,5
(E) −21,3

Ver Solução


  • RexKong

    boa questão, só é trabalhosa !

  • Maluco

    a resposta tb pode ser 12!!! essa questao deveria ser anulada. veja q x pode ser (-2,1,-4,-1) e y (0,5,  -0,5, 3, 2)!!!!!

  • Acmseirio

    Realmente este site é maravilhoso…
    Abraços e Parabéns pela iniciativa…

  • Acmseirio

    Realmente este site é maravilhoso…
    Abraços e Parabéns pela iniciativa…

  • Acmseirio

    Realmente este site é maravilhoso…
    Abraços e Parabéns pela iniciativa…

  • carolrj

    x + 2y = u
    3x + 4y = v

    =>
    2x + 4y = 2u
    3x + 4y = v . . -
    ———————
    -x = 2u – v
    x = v – 2u

    =>
    3x + 6y = 3u
    3x + 4y = v . . . -
    ———————
    2y = 3u – v
    y = (3u – v)/2

    Então:
    x = v – 2u
    x = (2,1,0,5) – 2(−1,0,2,3)
    x = (2,1,0,5) – (−2,0,4,6)
    x = (4,1,-4,-1)

    e
    y = (3u – v)/2
    y = [3(−1,0,2,3) - (2,1,0,5)]/2
    y = [(−3,0,6,9) - (2,1,0,5)]/2
    y = (−5,-1,6,4)/2
    y = (−5/2,-1/2,3,2)

    O produto interno:
    x . y = (4,1,-4,-1) . (−5/2,-1/2,3,2)
    x . y = [4*(-5/2)] + [1*(-1/2)] + (-4*3) + (-1*2)
    x . y = -10 – 1/2 – 12 – 2

    x . y = -24,5

    Resposta: letra (c)